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ABSTRACT

Reports of bleaching in corals and other
organisms have been increasing in frequency
over the past several years. These reports have
stimulated a great deal of interest in the cause
of this phenomenon, but little experimental
work has been performed. This study began a
systematic survey of bacteria associated with
the surface of bleached and nonbleached areas
of the scleractinian coral Montastrea annularis.
In February 1993, a M. annularis was located
in French Bay which showed areas of
bleaching. Syringe samples were taken from
bleached and nonbleached areas, including
surface mucus layers and polyp tissue.
Samples were transferred to vials, kept on ice,
and plated out on a nonselective medium.
Individual bacterial isolates were then
restreaked, checked for purity and inoculated
onto microplates containing 95 different
potential carbon sources and a water control
(BIOLOG PLATES TM). The oxidation of
carbon sources produced a pattern
characteristic of each isolate. These patterns
were entered into a database from which
comparisons of isolates from bleached and
healthy areas were made. Isolate patterns were
then grouped using cluster analysis so that
potential pathogens could be indicated. Thirty
percent of the isolates from bleached areas fell
into a cluster corresponding to
Vibrio/ Aeromonas while none of the isolates
from healthy areas fell into this cluster. This
approach may allow the determination of
pathogens involved in the cause or
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development of bleaching events.
INTRODUCTION

Coral reef ecosystems are among the most
diverse in the world’s oceans. However,
increasing reports of coral bleaching indicate
that these ecosystems may be in danger of
deterioration over time (Glynn, 1993). A
number of causes have been suggested for
bleaching including elevated temperatures
(Cook et al., 1990) changes in salinity (Reimer,
1971), increased irradiance (Lesser et al.,
1990), various possible pathogens
(Raghukumar and Raghukumar, 1991;
Edmunds, 1991; Peter, 1984) and a normal
process by which genetic variation among the
zooxanthellae are maintained (Buddemeier and
Fautin, 1993). Many other factors can also
induce bleaching, but the significance of each
factor is poorly understood. The mechanisms
by which bleaching proceeds are also poorly
understood.

Peters et al. (1983) and Peters (1984)
demonstrated the presence of bacterial
microcolonies in acroporid corals exhibiting
white band disease, but the identity of the
bacterium was unknown. Although bacteria
are known to be abundant and active around
corals and in the coral surface microlayer
(Sorokin, 1973; Hobbie et al. 1977; Fuhrman
and Azam, 1980; 1982; Paul, 1982; Segal and
Ducklow, 1982; Paul et al. 1986), very little
information exists on the structure or
composition of this community. The purpose
of this study was to determine the presence of



various metabolic types of bacteria associated
with healthy surfaces of Montastrea annularis
and compare them to metabolic types isolated
from the surface of bleached areas.

MATERIALS AND METHODS
Study Site

A stand of Montastrea annularis with
bleached areas was located in French Bay, San
Salvador Island, Bahamas (Fig. 1). Bacterial
samples were removed from the surface using
a 3.0 cc syringe. Triplicate sterile syringes
were used to obtain samples from both healthy
and bleached areas. Contents of the syringes
were transferred to sterile 1.5 ml vials on shore

and kept on ice or in a 2°C cold room until
plating in the laboratory.

Strain Isolation and Testing

Subsamples of 0.1 and 0.01 ml were spread
plated onto a glycerol artificial seawater
medium (Smith and Hayasaka, 1982). Plates

were incubated at 30°C for three days. All
detectable colonies arising on each plate, with

a distinctive morphology, were transferred to
new plates and checked for purity after three
days. Colonies containing pure cultures were
suspended in sterile artificial seawater at a
density of between 0.130 and 0.143
(absorbance at 600 nm). The suspension was
then distributed into Biolog TM plates. Each
plate had 96 microwells containing 95
different carbon sources and a control. Each
microwell contained tetrazolium violet to
indicate metabolic activity with each carbon
source. Results were read on an automated
plate reader, and added to a database.

Data Analysis

Carbon source utilization patters (CSUP’s)
were entered into a data base as a 32 digit code
(bionumber). Dendrogram construction
involved clustering of heirarchical trees using
a nearest neighbor unweighted pair group
averaging cluster analysis technique. An
individual cluster included all isolates showing
less than 15 differences in CSUP’s. Although
isolates were not grown on the same medium as
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those in the GN database, coral isolate
bionumbers were also compared to this
database to determine taxonomic groups in
general.

RESULTS AND DISCUSSION

Cell counts were higher from bleached
areas (29.7 cfu/0.1 ml, S.E.= 9.7) than from
nonbleached areas (13.7 cfu/0.1 ml, S.E.=9.2),
although differences were not statistically
significant. The number of different colony
morphologies per plate were significant (6.9,
S.E.= 1.5 for bleached and 2.7, S.E.= 0.4 for
nonbleached). This indicated a greater
diversity of culturable heterotrophic bacteria
from bleached areas compared to nonbleached
areas. Bleached areas were also found to have
less surface mucopolysaccaride layer than
nonbleached areas. The absence of
zooxanthellae may have affected the bacterial
population. Zooxanthellae are known to
increase surface mucopolysaccaride production
which may suppress bacterial growth of certain
strains or may provide a favorable carbon
source for specific bacterial types. Either
mechanism would decrease the population
diversity.

The combined dendrogram (Fig. 2)
revealed 13 clusters, A - M. Ten of these
clusters contained five or fewer strains.
Cluster H contained 30 isolates with
approximately equal number from both
bleached and nonbleached samples. Cluster I
contained only 7 isolates, also split about half
between bleached and nonbleached. These
isolates probably represent members of the
indigenous microflora for this coral species.
Comparing this database with the Biolog
database indicates that these bacteria (from
Clusters H and I) fall within three large
physiological groups. One group (subcluster
Hl), includes the genera Deleya and
Pseudomonas, while subcluster H2 includes
Brucella and others. This latter group,
however, used very few of the carbon sources
and may be relatively heterogeneous. All
isolates from Cluster I corresponded to the
genus Alteromonas. Both Deleya nauticus and
Alteromonas haloplanktis clustered very closely
to the coral isolates. Figure 3 shows the



paved road

inland lakes

processed by Francois Smith

Figure 1. Edge Enhanced Landsat TM image of San Salvador, Bahamas, 1985 data.
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Figure 3. Two dimensional representation of the
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Table 1. Distribution of Bacterial Isolates among Taxonomic Groups from Bleached and Nonbleached

Monastrea annularis.

Cluster Group %Nonbleached %Bleached
A Acinetobacter/ Alcaligines 0 2
B Acidovorax /Pseudomonas 4 0
C Sphingobacterium/ X anthomonas 4 2
D Pseudomonas /Vibrio 4 0
E Pseudomonas / X anthomonas 13 0
F No Identification 0 2
G Deleya/ X anthomonas 0 8
H1 Deleya/ Pseudomonas 8 2
H2 Brucella/Kingsella 44 32
I Alteromonas /Vibrio 12 8
J Vibrio/ Aeromonas 0 30
K Jand L 0 4
L Agrobacterium 4 0
M Enterobacter /Klebsiella 4 8

grouping of all clusters in two dimensions.

Thirteen percent of the nonbleached
isolates fell into Cluster E (Table 1). No
isolates from bleached areas were found in this
Cluster. Thirty percent of all bleached isolates
fell into Cluster J, with no representatives
from nonbleached areas. This cluster strongly
corresponded to the genus Vibrio. One isolate
was identified as Vibrio pelagius. Although
species identification must be suspect due to
media inconsistency, Gram stains, cell and
colony morphologies supported the genus
identification. In addition, known strains of
marine vibrios, grown on GASW fell into
Cluster J. Because none of the bleached
isolates were found associated with
nonbleached areas, the occurrence of this
group may be specifically associated with the
bleaching event. Members of the genus Vibrio
have been shown to be pathogens of a number
of marine animals (Baumann et al., 1984) and
our results indicate that this may also be the
case for corals.

SUMMARY

Results from this study indicate that the
normal culturable heterotrophic bacterial
community associated with M. annularis
includes the genera Deleya and Alteromonas.
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Bleaching events appear to decrease the
Pseudomonas population which is replaced by
the genus Vibrio. Studies designed to
determine the possible role of Vibrio sp. in the
development of coral bleaching are continuing.
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